I Theoretical Foundations.- 1 Finite Element Interpolation.- 2 Approximation in Banach Spaces by Galerkin Methods.- II Approximation of PDEs.- 3 Coercive Problems.- 4 Mixed Problems.- 5 First-Order PDEs.- 6 Time-Dependent Problems.- III Implementation.- 7 Data Structuring and Mesh Generation.- 8 Quadratures, Assembling, and Storage.- 9 Linear Algebra.- 10 A Posteriori Error Estimates and Adaptive Meshes.- IV Appendices.- A Banach and Hilbert Spaces.- A.1 Basic Definitions and Results.- A.2 Bijective Banach Operators.- B Functional Analysis.- B.1 Lebesgue and Lipschitz Spaces.- B.2 Distributions.- B.3 Sobolev Spaces.- Nomenclature.- References.- Author Index.
This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.