1 Introduction to Lie Groups.- 1.1. Manifolds.- Change of Coordinates.- Maps Between Manifolds.- The Maximal Rank Condition.- Submanifolds.- Regular Submanifolds.- Implicit Submanifolds.- Curves and Connectedness.- 1.2. Lie Groups.- Lie Subgroups.- Local Lie Groups.- Local Transformation Groups.- Orbits.- 1.3. Vector Fields.- Flows.- Action on Functions.- Differentials.- Lie Brackets.- Tangent Spaces and Vectors Fields on Submanifolds.- Frobenius' Theorem.- 1.4. Lie Algebras.- One-Parameter Subgroups.- Subalgebras.- The Exponential Map.- Lie Algebras of Local Lie Groups.- Structure Constants.- Commutator Tables.- Infinitesimal Group Actions.- 1.5. Differential Forms.- Pull-Back and Change of Coordinates.- Interior Products.- The Differential.- The de Rham Complex.- Lie Derivatives.- Homotopy Operators.- Integration and Stokes' Theorem.- Notes.- Exercises.- 2 Symmetry Groups of Differential Equations.- 2.1. Symmetries of Algebraic Equations.- Invariant Subsets.- Invariant Functions.- Infinitesimal Invariance.- Local Invariance.- Invariants and Functional Dependence.- Methods for Constructing Invariants.- 2.2. Groups and Differential Equations.- 2.3. Prolongation.- Systems of Differential Equations.- Prolongation of Group Actions.- Invariance of Differential Equations.- Prolongation of Vector Fields.- Infinitesimal Invariance.- The Prolongation Formula.- Total Derivatives.- The General Prolongation Formula.- Properties of Prolonged Vector Fields.- Characteristics of Symmetries.- 2.4. Calculation of Symmetry Groups.- 2.5. Integration of Ordinary Differential Equations.- First Order Equations.- Higher Order Equations.- Differential Invariants.- Multi-parameter Symmetry Groups.- Solvable Groups.- Systems of Ordinary Differential Equations.- 2.6. Nondegeneracy Conditions for Differential Equations.- Local Solvability.- In variance Criteria.- The Cauchy-Kovalevskaya Theorem.- Characteristics.- Normal Systems.- Prolongation of Differential Equations.- Notes.- Exercises.- 3 Group-Invariant Solutions.- 3.1. Construction of Group-Invariant Solutions.- 3.2. Examples of Group-Invariant Solutions.- 3.3. Classification of Group-Invariant Solutions.- The Adjoint Representation.- Classification of Subgroups and Subalgebras.- Classification of Group-Invariant Solutions.- 3.4. Quotient Manifolds.- Dimensional Analysis.- 3.5. Group-Invariant Prolongations and Reduction.- Extended Jet Bundles.- Differential Equations.- Group Actions.- The Invariant Jet Space.- Connection with the Quotient Manifold.- The Reduced Equation.- Local Coordinates.- Notes.- Exercises.- 4 Symmetry Groups and Conservation Laws.- 4.1. The Calculus of Variations.- The Variational Derivative.- Null Lagrangians and Divergences.- Invariance of the Euler Operator.- 4.2. Variational Symmetries.- Infinitesimal Criterion of Invariance.- Symmetries of the Euler-Lagrange Equations.- Reduction of Order.- 4.3. Conservation Laws.- Trivial Conservation Laws.- Characteristics of Conservation Laws.- 4.4. Noether's Theorem.- Divergence Symmetries.- Notes.- Exercises.- 5 Generalized Symmetries.- 5.1. Generalized Symmetries of Differential Equations.- Differential Functions.- Generalized Vector Fields.- Evolutionary Vector Fields.- Equivalence and Trivial Symmetries.- Computation of Generalized Symmetries.- Group Transformations.- Symmetries and Prolongations.- The Lie Bracket.- Evolution Equations.- 5.2. Récursion Operators, Master Symmetries and Formal Symmetries.- Frechet Derivatives.- Lie Derivatives of Differential Operators.- Criteria for Recursion Operators.- The Korteweg-de Vries Equation.- Master Symmetries.- Pseudo-differential Operators.- Formal Symmetries.- 5.3. Generalized Symmetries and Conservation Laws.- Adjoints of Differential Operators.- Characteristics of Conservation Laws.- Variational Symmetries.- Group Transformations.- Noether's Theorem.- Self-adjoint Linear Systems.- Action of Symmetries on Conservation Laws.- Abnormal Systems and Noether's Second Theorem.- Formal Symmetries and Conservation Laws.- 5.4. The Variational Complex.- The D-Complex.- Vertical Forms.- Total Derivatives of Vertical Forms.- Functionals and Functional Forms.- The Variational Differential.- Higher Euler Operators.- The Total Homotopy Operator.- Notes.- Exercises.- 6 Finite-Dimensional Hamiltonian Systems.- 6.1. Poisson Brackets.- Hamiltonian Vector Fields.- The Structure Functions.- The Lie-Poisson Structure.- 6.2. Symplectic Structures and Foliations.- The Correspondence Between One-Forms and Vector Fields.- Rank of a Poisson Structure.- Symplectic Manifolds.- Maps Between Poisson Manifolds.- Poisson Submanifolds.- Darboux' Theorem.- The Co-adjoint Representation.- 6.3. Symmetries, First Integrals and Reduction of Order.- First Integrals.- Hamiltonian Symmetry Groups.- Reduction of Order in Hamiltonian Systems.- Reduction Using Multi-parameter Groups.- Hamiltonian Transformation Groups.- The Momentum Map.- Notes.- Exercises.- 7 Hamiltonian Methods for Evolution Equations.- 7.1. Poisson Brackets.- The Jacobi Identity.- Functional Multi-vectors.- 7.2. Symmetries and Conservation Laws.- Distinguished Functionals.- Lie Brackets.- Conservation Laws.- 7.3. Bi-Hamiltonian Systems.- Recursion Operators.- Notes.- Exercises.- References.- Symbol Index.- Author Index.