Bücher Wenner
Vorlesetag - Das Schaf Rosa liebt Rosa
15.11.2024 um 15:00 Uhr
Introduction to Calculus and Classical Analysis
von Omar Hijab
Verlag: Springer New York
Reihe: Undergraduate Texts in Mathematics
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-1-4419-9488-2
Auflage: 3rd ed. 2011
Erschienen am 19.03.2011
Sprache: Englisch
Umfang: 364 Seiten

Preis: 58,84 €

58,84 €
merken
zum Hardcover 60,94 €
Inhaltsverzeichnis
Klappentext

1 The Set of Real Numbers.- 1.1 Sets and Mappings.- 1.2 The Set R.- 1.3 The Subset N and the Principle of Induction.- 1.4 The Completeness Property.- 1.5 Sequences and Limits.- 1.6 Nonnegative Series and Decimal Expansions.- 1.7 Signed Series and Cauchy Sequences.- 2 Continuity.- 2.1 Compactness.- 2.2 Continuous Limits.- 2.3 Continuous Functions.- 3 Differentiation.- 3.1 Derivatives.- 3.2 Mapping Properties.- 3.3 Graphing Techniques.- 3.4 Power Series.- 3.5 Trigonometry.- 3.6 Primitives.- 4 Integration.- 4.1 The Cantor Set.- 4.2 Area.- 4.3 The Integral.- 4.4 The Fundamental Theorem of Calculus.- 4.5 The Method of Exhaustion.- 5 Applications.- 5.1 Euler's Gamma Function.- 5.2 The Number p.- 5.3 Gauss' Arithmetic-Geometric Mean (AGM).- 5.4 The Gaussian Integral.- 5.5 Stirling's Approximation of n!.- 5.6 Infinite Products.- 5.7 Jacobi's Theta Functions.- 5.8 Riemann's Zeta Function.- 5.9 The Euler-Maclaurin Formula.- A Solutions.- A.1 Solutions to chapter 1 .- A.2 Solutions to chapter 2.- A.3 Solutions to chapter 3.- A.4 Solutions to chapter 4.- A.5 Solutions to chapter 5.- References.- Index



This text is intended for an honors calculus course or for an introduction to  analysis. Involving rigorous analysis, computational dexterity, and a breadth of  applications, it is ideal for undergraduate majors. This third edition includes  corrections as well as some additional material.

Some features of the text include: The text is completely self-contained and starts with the real number  axioms; The integral is defined as the area under the graph, while the area is  defined for every subset of the plane; There is a heavy emphasis on computational problems, from the high-school  quadratic formula to the formula for the derivative of the zeta function at  zero; There are applications from many parts of analysis, e.g., convexity, the  Cantor set, continued fractions, the AGM, the theta and zeta functions,  transcendental numbers, the Bessel and gamma functions, and many more; Traditionally transcendentally presented material, such as infinite  products, the Bernoulli series, and the zeta functional equation, is developed  over the reals; and There are 385 problems with all the solutions at the back of the text.


andere Formate
weitere Titel der Reihe