Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
A First Course in Analysis
von George Pedrick
Verlag: Springer New York
Reihe: Undergraduate Texts in Mathematics
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-1-4419-8554-5
Auflage: 1994
Erschienen am 10.09.2012
Sprache: Englisch
Umfang: 279 Seiten

Preis: 53,49 €

Inhaltsverzeichnis
Klappentext

Background Number Systems.- §1. Counting: The Natural Numbers.- §2. Measurement: The Rational Numbers.- The Axioms of Ordered Fields.- §3. Decimal Representation. Irrationals.- I ANALYSIS.- 1 Approximation: The Real Numbers.- §1. Least Upper Bound.- §2. Completeness. Nested Intervals.- §3. Bounded Monotonic Sequences.- §4. Cauchy Sequences.- §5. The Real Number System.- §6. Countability.- Appendix. The Fundamental Theorem of Algebra. Complex Numbers.- 2 The Extreme-Value Problem.- §1. Continuity, Compactness, and the Extreme-Value Theorem.- §2. Continuity of Rational Functions. Limits of Sequences.- Appendix. Completion of the Proof of the Fundamental Theorem of Algebra.- §3. Sequences and Series of Reals. The Number e.- §4. Sets of Reals. Limits of Functions.- 3 Continuous Functions.- §1. Implicit Functions,$$\sqrt[n]{x}$$The Intermediate-Value Theorem.- §2. Inverse Functions. xr for r ? ?.- §3. Continuous Extension. Uniform Continuity. The Exponential and Logarithm.- §4. The Elementary Functions.- §5. Uniformity. The Heine-Borel Theorem.- §6. Uniform Convergence. A Nowhere Differentiable Continuous function.- §7. The Weierstrass Approximation Theorem.- Summary of the Main Properties of Continuous Functions.- Appendix. A Space-Filling Continuous Curve.- II FOUNDATIONS OF CALCULUS.- 4 Differentiation.- §1. Differential and Derivative. Tangent Line.- §2. The Foundations of Differentiation.- §3. Curve Sketching. The Mean-Value Theorem.- §4. Taylor's Theorem.- §5. Functions Defined Implicitly.- 5 Integration.- §1. Definitions. Darboux Theorem.- §2. Foundations of Integral Calculus. The Fundamental Theorem of Calculus.- §3. The Nature of Integrability. Lebesgue's Theorem.- §4. Improper Integral.- §5. Arclength. Bounded Variation.- A Word About the Stieltjes Integral and Measure Theory.- 6 Infinite Series.- §1. The Vibrating String.- §2. Convergence: General Considerations.- §3. Convergence: Series of Positive Terms.- §4. Computation with Series.- §5. Power Series.- §6. Fourier Series.



This text on advanced calculus discusses such topics as number systems, the extreme value problem, continuous functions, differentiation, integration and infinite series. The reader will find the focus of attention shifted from the learning and applying of computational techniques to careful reasoning from hypothesis to conclusion. The book is intended both for a terminal course and as preparation for more advanced studies in mathematics, science, engineering and computation.


andere Formate
weitere Titel der Reihe