Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
The Boundary Value Problems of Mathematical Physics
von O. A. Ladyzhenskaya
Übersetzung: J. Lohwater
Verlag: Springer New York
Reihe: Applied Mathematical Sciences Nr. 49
Hardcover
ISBN: 978-1-4419-2824-5
Auflage: Softcover reprint of hardcover 1st ed. 1985
Erschienen am 01.12.2010
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 20 mm [T]
Gewicht: 540 Gramm
Umfang: 356 Seiten

Preis: 90,94 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 3. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

In the present edition I have included "Supplements and Problems" located at the end of each chapter. This was done with the aim of illustrating the possibilities of the methods contained in the book, as well as with the desire to make good on what I have attempted to do over the course of many years for my students-to awaken their creativity, providing topics for independent work. The source of my own initial research was the famous two-volume book Methods of Mathematical Physics by D. Hilbert and R. Courant, and a series of original articles and surveys on partial differential equations and their applications to problems in theoretical mechanics and physics. The works of K. o. Friedrichs, which were in keeping with my own perception of the subject, had an especially strong influence on me. I was guided by the desire to prove, as simply as possible, that, like systems of n linear algebraic equations in n unknowns, the solvability of basic boundary value (and initial-boundary value) problems for partial differential equations is a consequence of the uniqueness theorems in a "sufficiently large" function space. This desire was successfully realized thanks to the introduction of various classes of general solutions and to an elaboration of the methods of proof for the corresponding uniqueness theorems. This was accomplished on the basis of comparatively simple integral inequalities for arbitrary functions and of a priori estimates of the solutions of the problems without enlisting any special representations of those solutions.



I Preliminary Considerations.- II Equations of Elliptic Type.- III Equations of Parabolic Type.- IV Equations of Hyperbolic Type.- V Some Generalizations.- VI The Method of Finite Differences.


andere Formate
weitere Titel der Reihe