Bücher Wenner
Volker Kutscher liest aus "RATH"
18.11.2024 um 19:30 Uhr
Optimal Control Theory
von L. D. Berkovitz
Verlag: Springer New York
Reihe: Applied Mathematical Sciences Nr. 12
Hardcover
ISBN: 978-1-4419-2804-7
Auflage: Softcover reprint of hardcover 1st ed. 1974
Erschienen am 03.12.2010
Sprache: Englisch
Format: 254 mm [H] x 178 mm [B] x 18 mm [T]
Gewicht: 605 Gramm
Umfang: 320 Seiten

Preis: 53,49 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 3. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

This book is an introduction to the mathematical theory of optimal control of processes governed by ordinary differential eq- tions. It is intended for students and professionals in mathematics and in areas of application who want a broad, yet relatively deep, concise and coherent introduction to the subject and to its relati- ship with applications. In order to accommodate a range of mathema- cal interests and backgrounds among readers, the material is arranged so that the more advanced mathematical sections can be omitted wi- out loss of continuity. For readers primarily interested in appli- tions a recommended minimum course consists of Chapter I, the sections of Chapters II, III, and IV so recommended in the introductory sec­ tions of those chapters, and all of Chapter V. The introductory sec­ tion of each chapter should further guide the individual reader toward material that is of interest to him. A reader who has had a good course in advanced calculus should be able to understand the defini­ tions and statements of the theorems and should be able to follow a substantial portion of the mathematical development. The entire book can be read by someone familiar with the basic aspects of Lebesque integration and functional analysis. For the reader who wishes to find out more about applications we recommend references [2], [13], [33], [35], and [50], of the Bibliography at the end of the book.



I. Examples of Control Problems.- II. Formulation of the Control Problem.- III. Existence Theorems with Convexity Assumptions.- IV. Existence Without Convexity.- V. The Maximum Principle and Some of Its Applications.- VI. Proof of the Maximum Principle.- Bibliographical Notes.


andere Formate
weitere Titel der Reihe