This book is devoted to the study of variational methods in imaging. The presentation is mathematically rigorous and covers a detailed treatment of the approach from an inverse problems point of view. Many numerical examples accompany the theory throughout the text. It is geared towards graduate students and researchers in applied mathematics. Researchers in the area of imaging science will also find this book appealing. It can serve as a main text in courses in image processing or as a supplemental text for courses on regularization and inverse problems at the graduate level.
Fundamentals of Imaging.- Case Examples of Imaging.- Image and Noise Models.- Regularization.- Variational Regularization Methods for the Solution of Inverse Problems.- Convex Regularization Methods for Denoising.- Variational Calculus for Non-convex Regularization.- Semi-group Theory and Scale Spaces.- Inverse Scale Spaces.- Mathematical Foundations.- Functional Analysis.- Weakly Differentiable Functions.- Convex Analysis and Calculus of Variations.