Bücher Wenner
Pierre Jarawan liest aus DIE FRAU IM MOND
03.09.2025 um 19:30 Uhr
Mathematical Modeling in Agriculture
von Sabyasachi Pramanik, Niranjanamurthy M., Ankur Gupta, Ahmed J. Obaid
Verlag: John Wiley & Sons
E-Book / PDF
Kopierschutz: Adobe DRM


Speicherplatz: 44 MB
Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-1-394-23371-7
Auflage: 1. Auflage
Erschienen am 02.10.2024
Sprache: Englisch
Umfang: 462 Seiten

Preis: 194,99 €

Klappentext
Biografische Anmerkung
Inhaltsverzeichnis

The main goal of the book is to explore the idea behind data modeling in smart agriculture using information and communication technologies and tools to make agricultural practices more functional, fruitful and profitable.

The research in the book looks at the likelihood and level of use of implemented technological components with regard to the adoption of different precision agricultural technologies. To identify the variables affecting farmers' choices to embrace more precise technology, zero-inflated Poisson and negative binomial count data regression models were utilized. Outcomes from the count data analysis of a random sample of various farm operators show that various aspects, including farm dimension, farmer demographics, soil texture, urban impacts, farmer position of liabilities, and position of the farm in a state, were significantly associated with the approval severity and likelihood of precision farming technologies.

Farm management information systems (FMIS) have constantly advanced in complexity as they have incorporated new technology, the most recent of which is the internet. However, few FMIS have fully tapped into the internet's possibilities, and the newly developing idea of precision agriculture receives little or no support in the FMIS that are now being sold. FMIS for precision agriculture must meet a few more criteria beyond those of regular FMIS, which increases the technological complexity of these systems' deployment in a number of ways. In order to construct an FMIS that meet these extra needs, the authors here evaluated various cutting-edge web-based methods. The goal was to determine the requirements that precision agriculture placed on FMIS.



Sabyasachi Pramanik, PhD, is an associate professor in the Department of Computer Science and Engineering, Haldia Institute of Technology, India. He has many publications in technical conferences and journals, as well as online book chapter contributions. He is also a reviewer for and on numerous editorial boards for technical journals. He has authored one book and edited nine books, including books for Scrivener Publishing.

Niranjanamurthy M., PhD, is an assistant professor in the Department of Artificial Intelligence and Machine Learning, BMS Institute of Technology and Management, Yelahanka, Bengalore, India. He has over ten years of teaching experience and two years of industry experience as a software engineer. He has published five books and is working on numerous books for Scrivener Publishing. He has published 54 research papers in various scientific refereed journals and filed ten patents, with two granted so far. He is a reviewer for more than 20 journals and has received numerous awards.

Ankur Gupta, MTech, is an assistant professor in the Department of Computer Science and Engineering at Vaish College of Engineering, Rohtak, India. He has many publications in scientific journals and conferences and online book chapter contributions.

Ahmed J. Obaid, PhD, is an assistant professor in the Department of Computer Science, Faculty of Computer Science and Mathematics, University of Kufa, Iraq. He has over 14 years of teaching experience and is a board member on numerous scientific journals. He has published over 75 journal research articles, five book chapters, 15 conference papers, 10 conference proceedings, and has edited eight books.



Preface xiii


1 Analyzing the Impact of Food Safety Regulations on Agricultural Supply Chains: A Mathematical Modeling Perspective 1
Nimit Kumar, Shwetha M.S., Govind Shay Sharma, Nitin Ubale, Nuzhat Fatima Rizvi and Dharmesh Dhabliya


1.1 Introduction 2


1.2 Resources and Techniques 4


1.3 Results and Analysis 6


1.3.1 Knowledge, Application, and Obstacles to Food Modeling 6


1.3.2 Obstacles to Our Company's Use of Mathematical Modeling 7


1.4 Conclusion 12


References 13


2 Modeling the Effects of Land Degradation on Agricultural Productivity: Implications for Legal and Policy Interventions 17
Amit Verma, Istita Auddy, Murli Manohar Gour, Dhwani Bartwal, Sukhvinder Singh Dari and Ankur Gupta


2.1 Introduction 18


2.2 Materials and Procedures 20


2.2.1 Content of Minerals 23


2.3 Results and Analysis 24


2.4 Conclusion 28


References 29


3 Mathematical Modeling of Carbon Sequestration in Agricultural Soils: Implications for Climate Change Mitigation Policies 33
Kailash Malode, Brijpal Singh Rajawat, Amar Shankar S., Ravindra Kumar, Deepti Khubalkar and Sabyasachi Pramanik


3.1 Introduction 34


3.2 Resources and Techniques 35


3.2.1 Reference Trial 36


3.2.2 Interviews with Agriculturists in London Suburb and Liverpool 38


3.2.2.1 Overall Explanation of the Sampled Region and Organized Interviews 38


3.2.3 Online Tools for Calculating CF 38


3.3 Results 40


3.3.1 Agricultural Data as Model I/P 40


3.3.1.1 Case Study 40


3.3.1.2 From Discussions with Farmers 41


3.3.2 Farms' Estimated GHG Emissions 43


3.3.3 Effects of Mitigating Measures 44


3.4. Discussion 44


3.4.1 Evaluating the Possible Effects of Mitigating Measures 46


3.5 Conclusions 47


References 48


4 Optimizing Livestock Feed Formulation for Sustainable Agriculture: A Mathematical Modeling Approach 51
Rutul Patel, Upasana, Ashutosh Pattanaik, Deepak Kumar, Ahmar Afaq and Soma Bag


4.1 Introduction 52


4.2 Managing Swine Herds Using Modeling 53


4.2.1 System of a Sow Herd 53


4.2.2 Major Statistical Techniques Used in Modeling Cattle Herds 55


4.2.2.1 Literature Review on Herd Modeling for Cattle 55


4.2.2.2 Models for Simulation 56


4.2.2.3 Models for Optimization 56


4.2.2.4 The Integration of Simulation and Optimization 57


4.3 Models of a Sow Herd 58


4.3.1 Chosen Models 58


4.3.2 Input Criteria 59


4.3.2.1 Parameters Used as Inputs in Optimization Models 59


4.3.2.2 Parameters Used as Inputs in Simulation Techniques 60


4.3.3 Results from the Models 61


4.3.4 The Models' Validation 62


4.3.5 Opportunities for Implementation and Integration 63


4.3.6 Management of Risk 64


4.3.7 Additional Submissions and Literature Review 64


4.4 Discussion 65


4.5 Conclusions 68


References 69


5 Modeling the Economic Impact of Agricultural Regulations: A Case Study on Environmental Compliance Costs 81
Vikesh Rami, Sunil Kumar, Gautham Krishna, Abhinav, Sukhvinder Singh Dari and Dharmesh Dhabliya


5.1 Introduction 82


5.2 Mechanisms Study Time and Location 83


5.3 Sampling 85


5.4 Analysis, Both Physical and Chemical 85


5.5 Module for Water Quality 87


5.6 Particulate Phosphorus and Suspended Solids 87


5.7 Calculation of PP 88


5.8 Model Caliphy 89


5.9 Scientifications Described by the Model 94


5.10 Simulation of Sediment Trap 96


5.11 Pumping Profile Modifications Simulation 98


5.12 Conclusion 98


References 99


6 Quantifying the Economic Benefits of Precision Agriculture Technologies: A Mathematical Modeling Study 103
Deepak Kumar, Apexaben Rathod, Sachchida Nand Singh, Meena Y. R., Rushil Chandra and Ankur Gupta


6.1 Introduction 104


6.2 Method and Materials 107


6.3 Conclusion and Results 110


6.4 Conclusions 112


References 113


7 Optimizing Resource Allocation in Agribusinesses: A Mathematical Modeling Approach Considering Legal Factors 115
Vishvendra Singh, Navghan Mahida, Anand Janardan Madane, Sudhakar Reddy, Parth Sharma and Sabyasachi Pramanik


Introduction 116


Methods 119


A Framework for the Transmission and Command


of Brucellosis: A Case Study Overview 120


Brucellosis Nominal Transmission Modeling 120


Modeling Disease Costs and Control Capabilities 124


Creating a Cost Model and Confronting the Challenge of Control Design 125


Analysis, Design, and Parameterization Techniques 127


Overview of the Control and Surveillance Design 128


Network Model Identification and Validation for Zoonoses 129


Results 130


Indicative Model 131


Control Strategy Modeling 135


Optimized Approaches 137


Parameterization 143


Discussion 143


Wide-Ranging Perspectives on High-Performance Control 144


Talking About Parameterzing Models 147


Conclusion 148


References 150


8 Modeling the Dynamics of Agricultural Cooperatives and Legal Implications for Farmer Organizations 153
Shiv Shankar Shankar, Prashantkumar Zala, Ashutosh Awasthi, Ezhilarasan G., Sukhvinder Singh Dari and Soma Bag


8.1 Introduction 154


8.2 Resources and Techniques 155


8.3 Conclusion 160


References 160


9 Optimizing Agroforestry Systems for Sustainable Agriculture: A Mathematical Modeling Approach 163
Beemkumar Nagappan, Aakriti Chauhan, Chandni Mori, Praveen Kumar Singh, Shilpa Sharma and Sabyasachi Pramanik


9.1 Introduction 164


9.2 Relationships Between Structure and Activity (SAR) and the Level of Toxicological Involvement 169


9.3 Threshold Approaches 174


9.4 Reciprocal Analysis 178


9.5 Chemical-Specific Adjustments 183


Conclusion 184


References 185


10 Simulating the Effects of Climate-Smart Agriculture Practices on Farm Resilience: A Mathematical Modeling Approach 189
Kiran K. S., Meenakshi Dheer, Mukesh Laichattiwar, Devendra Pal Singh, Vaidehi Pareek and Soma Bag


10.1 Introduction 190


10.2 Definitions, Concepts, and Methods for the Analytical Framework 191


10.3 Results 194


10.4 Consequences for Political Implementations 203


10.5 Advanced Research 204


10.6 Conclusions 206


References 207


11 Modeling the Dynamics of Agrochemical Regulations and Impacts on Agricultural Productivity 211
Hannah Jessie Rani, Akanchha Singh, Aishwary Awasthi, Ashwani Rawat, Nuvita Kalra and Ankur Gupta


11.1 Introduction 212


11.2 Resources and Techniques 213


11.3 Results 216


11.4 Discussion 217


11.5 Conclusion 219


References 220


12 Optimizing Energy Consumption in Greenhouse Production: A Mathematical Modeling Approach 223
Beemkumar Nagappan, Arun Gupta, Sachin Gupta, Diksha Nautiyal, Aarti Kalnawat and Dharmesh Dhabliya


12.1 Introduction 224


12.2 Literature Review 227


12.3 The Creation of Mathematical Models a Range of Models 229


12.4 Formulation of a Model 231


12.5 Modeling of Groundwater Quality 242


12.6 Conclusion 244


References 244


13 Analyzing the Economic and Legal Impacts of Intellectual Property Rights on Plant Breeding Innovations: A Mathematical Modeling Study 249
Gopalakrishna K., Bhirgu Raj Maurya, Rajeev Kumar, Sushila Arya, Himanshi Bhatia and Ankur Gupta


13.1 Introduction 250


13.2 Competition Postulates 251


13.3 Transparent Competition 251


13.3.1 Effect of Competitiveness-Density 252


13.3.2 Changes to the Population's Size Structure 252


13.4 Concurrence Inter-Specific 253


13.4.1 Adding Damage 254


13.4.2 Neighborhood Function 256


13.4.3 Innovative Design and Analysis 256


13.5 Dynamic Plant Growth and Competition Models 256


13.5.1 Dynamic Population 258


13.6 Aspects Impacting the Result of Competitiveness 259


13.7 Crop-Weed Competition Models Applied in Practical Situations 260


13.8 Conclusion 261


References 262


14 Simulating the Effects of Land Use Regulations on Agricultural Land Values: A Mathematical Modeling Study 265
Ashwani Rawat, Ramachandran T., Yogesh Chandra Gupta, Manoj Kumar Mishra, Gabriela Michael and Sabyasachi Pramanik


14.1 Introduction 266


14.2 Models of Component Agricultural Systems 267


14.3 Present-Day Farming System Frameworks in Relation to Certain Application Situations 284


14.4 Discussion 286


References 290


15 Simulating the Effects of Agricultural Land Fragmentation on Farm Effciency: A Mathematical Modeling Analysis 295
Diksha Nautiyal, Manjunath H. R., Praveen Kumar Singh, Umesh Kumar Tripathi, Saurabh Raj and Soma Bag


15.1 Introduction 296


15.2 Conceptual Foundation 297


15.3 Resources and Techniques Household Polls 299


15.4 Results 306


15.5 Discussion 313


15.6 Conclusions 316


References 317


16 Simulating the Effects of Land Use Policies on Agricultural Productivity: A Mathematical Modeling Perspective 321
Vinaya Kumar Yadav, Sushila Arya, Asha Rajiv R., Devendra Pal Singh, Siddharth Ranka and Dharmesh Dhabliya


16.1 Introduction 322


16.2 Upcoming Applications of NextGen Farming Frameworks 326


16.3 Envisioned Consumers of the Application Chain Beneficiaries 331


16.4 Conclusion and Research Plan 340


References 341


17 Quantifying the Economic Benefits of Agricultural Extension Services: A Mathematical Modeling Analysis 345
Rajeev Kumar, Satendra Kumar, Pradeepa P., Akanchha Singh, Karun Sanjaya and Ankur Gupta


17.1 Introduction 346


17.2 Creating New Models for the Future: A Demand-Driven, Prospective Strategy 347


17.3 Potential Improvements to Model Elements 355


17.4 Conclusions 367


References 368


18 Modeling the Impact of Agricultural Investment Incentives on Rural Development: Legal and Economic Perspectives 373
Dal Chandra, Manoj Kumar Mishra, Ankit Pant, Ahmadi Begum, Sukhvinder Singh Dari and Dharmesh Dhabliya


18.1 Introduction 374


18.2 Approach 376


18.3 Conversation 384


18.4 Conclusion 390


References 391


19 Optimizing Harvest Scheduling in Agriculture: A Mathematical Modeling Approach Considering Legal Restrictions 397
Heejeebu Shanmukha Viswanath, Umesh Kumar Tripathi, Minnu Sasi, Kishore Kumar Pedapenki, Prashant Dhage and Ankur Gupta


19.1 Initialization 398


19.2 Structure of the System 406


19.3 Irrigation Community Event 409


19.4 Assessment and Authentication 412


19.5 Conclusions 416


References 418


20 Quantifying the Economic Benefits of Agricultural Data Sharing: A Mathematical Modeling Perspective 421
Aruno Raj Singh, Vinaya Kumar Yadav, Laishram Zurika, Dasarathy A. K., Abhishekh Benedict and Dharmesh Dhabliya


20.1 Introduction 422


20.2 Model for Data Mining Process 423


20.3 Techniques for Machine Learning 424


20.4 Website Tools 429


20.5 Case Study: Grading of Mushrooms 431


20.6 Conclusion 432


References 433


Index 437


andere Formate