Tony Barnard has lectured at King's College London on abstract algebra for over 35 years. His research activity was initially in abstract algebra and more recently has been in the psychology of mathematics education. He has served on several consultative committees of the UK government and learned societies, advising on matters relating to the school mathematics curriculum and university mathematics teaching.
Hugh Neill started as a school teacher, moved into mathematics teaching at the University of Durham and then became the senior mathematics inspector in schools in Inner London until the Inner London Education Authority was abolished in 1990. During this time he was heavily involved in the design and assessment of mathematics courses for future mathematics teachers. Since 1990 he has been writing mathematics books.
This book presents group theory to students taking a course to transition to advanced mathematics with the goal of preparing them for higher level mathematical study. The book covers the usual material which is found in a first course on groups with both preliminary chapters and examples of groups, results about integers, study cosets, and isomorphism theorem.
1. Proof; 2 Sets; 3. Binary operations; 4. Integers; 5. Groups ; 6. Subgroups; 7. Cyclic groups; 8. Products of groups; 9. Functions; 10. Composition of functions; 11. Isomorphisms; 12. Permutations; 13. Dihedral groups; 14. Cosets; 15. Groups of orders up to 8; 16. Equivalence relations; 17. Quotient groups; 18. Homomorphisms; 19. The First Isomorphism Theorem; Answers; Index