Bücher Wenner
Volker Kutscher liest aus "RATH"
18.11.2024 um 19:30 Uhr
Theory of Solid-Propellant Nonsteady Combustion
von Vasily B Novozhilov, Boris V Novozhilov
Verlag: Wiley
Reihe: Wiley-Asme Press
Gebundene Ausgabe
ISBN: 978-1-119-52570-7
Erschienen am 15.09.2020
Sprache: Englisch
Format: 246 mm [H] x 173 mm [B] x 23 mm [T]
Gewicht: 748 Gramm
Umfang: 352 Seiten

Preis: 146,50 €
keine Versandkosten (Inland)


Jetzt bestellen und voraussichtlich ab dem 9. Dezember in der Buchhandlung abholen.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung
Inhaltsverzeichnis

Despite significant developments and widespread theoretical and practical interest in the area of Solid-Propellant Nonsteady Combustion for the last fifty years, a comprehensive and authoritative text on the subject has not been available. Theory of Solid-Propellant Nonsteady Combustion fills this gap by summarizing theoretical approaches to the problem within the framework of the Zeldovich-Novozhilov (ZN-) theory. This book contains equations governing unsteady combustion and applies them systematically to a wide range of problems of practical interest. Theory conclusions are validated, as much as possible, against available experimental data. Theory of Solid-Propellant Nonsteady Combustion provides an accurate up-to-date account and perspectives on the subject and is also accompanied by a website hosting solutions to problems in the book.



Professor Boris V. Novozhilov (1930-2017), Chief Researcher, The Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.

Professor Vasily B. Novozhilov, Professor of Mathematics, Discipline of Science, Research Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne Victoria, Australia.



About the Authors

Preface

Abbreviations

CHAPTER I STEADY-STATE COMBUSTION

1.1  General Characteristics of Solid Propellants

1.2  Burning Rate and Surface Temperature

1.3  Combustion Wave Structure.Burning temperature

1.4  Combustion in Tangential Gas Stream 

1.5  Gaseous flame

1.6  Combustion Wave in Condensed Phase

1.7 The Two Approaches to the Theory of Nonsteady Propellant Combustion

1.8  Steady-State Belyaev Model

CHAPTER II EQUATIONS OF THE THEORY OF NONSTEADY COMBUSTION

2.1  Major Assumptions

2.2  Zeldovich Theory. Constant Surface Temperature

2.3  Variable Surface Temperature

2.4  Integral Formulation of the Theory

2.5  Theory Formulation through the set of Ordinary Differential Equations

2.6  Linear Approximation

2.7  Formal Mathematical Justification of the Theory

CHAPTER III  COMBUSTION UNDER CONSTANT PRESSURE

3.1  Stability Criterion for a Steady-state Combustion Regime

3.2  Asymptotical Perturbation Analysis

3.3  Two-dimensional Combustion Stability of Gasless Systems

3.4  Combustion Beyond Stability Region

3.5  Comparison to Experimental Data

CHAPTER IV  COMBUSTION UNDER HARMONICALLY OSCILLATING PRESSURE

4.1  Linear Burning Rate Response to Harmonically Oscillating Pressure

4.2  Acoustic Admittance of Propellant Surface

4.3  Quadratic Response Functions

4.4  Acoustic Admittance in the Second-order Approximation

4.5  Nonlinear Resonance

4.6  Response Function Bifurcations

4.7  Frequency - Amplitude Diagram

4.8  Comparison to Experimental Data

CHAPTER V  NONSTEADY EROSIVE COMBUSTION

5.1  Problem formulation

5.2  Linear Approximation

5.3  Nonlinear Effects in Nonsteady Erosive Combustion

CHAPTER VI  NONSTEADY COMBUSTION UNDER EXTERNAL RADIATION

6.1  Steady-state Combustion Regime

6.2  Heat Transfer Equation in the Linear Approximation

6.3  Linearization of Nonsteady Burning Laws

6.4  Steady-state Combustion Regime Stability

6.5  Burning Rate Response to Harmonically Oscillating Pressure

6.6  Burning Rate Response to Harmonically Oscillating Radiative Flux

6.7  Relation between Burning Rate Responses to Harmonically Oscillating Pressure and Radiative Flux

CHAPTER VII NON-ACOUSTIC COMBUSTION REGIMES. EXTINCTION

7.1  Acoustic and Non-acoustic Combustion Regimes

7.2  Linear Approximation

7.3  Approximate Approach in the Theory of Nonsteady Combustion

7.4  Self-similar Solution

7.5  Self-similar Solution Stability

7.6 Propellant Combustion and Extinction under Depressurization.      

Constant Surface Temperature.

7.7  Propellant Combustion and Extinction under Depressurization.   

Variable Surface Temperature.

CHAPTER VIII MODELING NONSTEADY COMBUSTION IN SOLID ROCKET MOTOR

8.1  Introduction

8.2  Non-acoustic Regimes. Problem Formulation

8.3  Stability of Steady-state Regime in a Semi-enclosed Volume

8.4  Transient Regimes

8.5  Unstable and Chaotic Regimes

8.6  Experimental Data

8.7  Acoustic Regimes

8.8  Automatic Control of Propellant Combustion Stability in a Semi-       enclosed Volume

CHAPTER IX INFLUENCE OF GAS-PHASE INERTIA ON NONSTEADY COMBUSTION

9.1  Introduction

9.2  Steady-state Combustion Regime Stability

9.3  Burning Rate Response to Harmonically Oscillating Pressure

9.4  Acoustic Admittance of Propellant Surface

9.5  Combustion and Extinction under Depressurization

9.6   approximation

References

Problems

Problem Solutions

Subject Index


andere Formate
weitere Titel der Reihe