Bücher Wenner
Olga Grjasnowa liest aus "JULI, AUGUST, SEPTEMBER
04.02.2025 um 19:30 Uhr
Sets of Finite Perimeter and Geometric Variational Problems
von Francesco Maggi
Verlag: Cambridge University Press
Gebundene Ausgabe
ISBN: 978-1-107-02103-7
Erschienen am 03.08.2016
Sprache: Englisch
Format: 235 mm [H] x 157 mm [B] x 32 mm [T]
Gewicht: 917 Gramm
Umfang: 476 Seiten

Preis: 71,10 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 4. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung
Inhaltsverzeichnis

An engaging graduate-level introduction that bridges analysis and geometry. Suitable for self-study and a useful reference for researchers.



Francesco Maggi is an Associate Professor at the University of Texas, Austin, USA.



Part I. Radon Measures on Rn: 1. Outer measures; 2. Borel and Radon measures; 3. Hausdorff measures; 4. Radon measures and continuous functions; 5. Differentiation of Radon measures; 6. Two further applications of differentiation theory; 7. Lipschitz functions; 8. Area formula; 9. Gauss-Green theorem; 10. Rectifiable sets and blow-ups of Radon measures; 11. Tangential differentiability and the area formula; Part II. Sets of Finite Perimeter: 12. Sets of finite perimeter and the Direct Method; 13. The coarea formula and the approximation theorem; 14. The Euclidean isoperimetric problem; 15. Reduced boundary and De Giorgi's structure theorem; 16. Federer's theorem and comparison sets; 17. First and second variation of perimeter; 18. Slicing boundaries of sets of finite perimeter; 19. Equilibrium shapes of liquids and sessile drops; 20. Anisotropic surface energies; Part III. Regularity Theory and Analysis of Singularities: 21. (¿, r0)-perimeter minimizers; 22. Excess and the height bound; 23. The Lipschitz approximation theorem; 24. The reverse Poincaré inequality; 25. Harmonic approximation and excess improvement; 26. Iteration, partial regularity, and singular sets; 27. Higher regularity theorems; 28. Analysis of singularities; Part IV. Minimizing Clusters: 29. Existence of minimizing clusters; 30. Regularity of minimizing clusters; References; Index.


andere Formate