Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
Optimal Mass Transport on Euclidean Spaces
von Francesco Maggi
Verlag: Cambridge University Press
Reihe: Cambridge Studies in Advanced Nr. 207
Reihe: Cambridge Studies in Advanced Mathematics
Gebundene Ausgabe
ISBN: 978-1-009-17970-6
Erschienen am 16.11.2023
Sprache: Englisch
Format: 230 mm [H] x 162 mm [B] x 25 mm [T]
Gewicht: 576 Gramm
Umfang: 345 Seiten

Preis: 66,50 €
keine Versandkosten (Inland)


Jetzt bestellen und voraussichtlich ab dem 2. Dezember in der Buchhandlung abholen.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

66,50 €
merken
zum E-Book (PDF) 63,99 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung
Inhaltsverzeichnis

"This is a graduate-level introduction to the key ideas and theoretical foundation of the vibrant field of optimal mass transport in the Euclidean setting. Taking a pedagogical approach, it introduces concepts gradually and in an accessible way, while also remaining technically and conceptually complete"--



Francesco Maggi is Professor of Mathematics at the University of Texas at Austin. His research interests include the calculus of variations, partial differential equations, and optimal mass transport. He is the author of Sets of Finite Perimeter and Geometric Variational Problems published by Cambridge University Press.



Preface; Notation; Part I. The Kantorovich Problem: 1. An introduction to the Monge problem; 2. Discrete transport problems; 3. The Kantorovich problem; Part II. Solution of the Monge Problem with Quadratic Cost: the Brenier-McCann Theorem: 4. The Brenier theorem; 5. First order differentiability of convex functions; 6. The Brenier-McCann theorem; 7. Second order differentiability of convex functions; 8. The Monge-Ampère equation for Brenier maps; Part III. Applications to PDE and the Calculus of Variations and the Wasserstein Space: 9. Isoperimetric and Sobolev inequalities in sharp form; 10. Displacement convexity and equilibrium of gases; 11. The Wasserstein distance W2 on P2(Rn); 12. Gradient flows and the minimizing movements scheme; 13. The Fokker-Planck equation in the Wasserstein space; 14. The Euler equations and isochoric projections; 15. Action minimization, Eulerian velocities and Otto's calculus; Part IV. Solution of the Monge Problem with Linear Cost: the Sudakov Theorem: 16. Optimal transport maps on the real line; 17. Disintegration; 18. Solution to the Monge problem with linear cost; 19. An introduction to the needle decomposition method; Appendix A: Radon measures on Rn and related topics; Appendix B: Bibliographical Notes; Bibliography; Index.


andere Formate
weitere Titel der Reihe