Bücher Wenner
Volker Kutscher liest aus "RATH"
18.11.2024 um 19:30 Uhr
Machine Learning on Commodity Tiny Devices
Theory and Practice
von Song Guo, Qihua Zhou
Verlag: Taylor & Francis
E-Book / EPUB
Kopierschutz: kein Kopierschutz


Speicherplatz: 7 MB
Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-1-000-78038-3
Auflage: 1. Auflage
Erschienen am 13.12.2022
Sprache: Englisch
Umfang: 268 Seiten

Preis: 95,99 €

Klappentext
Biografische Anmerkung
Inhaltsverzeichnis

This book aims at the tiny machine learning (TinyML) software and hardware synergy for edge intelligence applications. It presents on-device learning techniques covering model-level neural network design, algorithm-level training optimization, and hardware-level instruction acceleration.



Song Guo is a Full Professor leading the Edge Intelligence Lab and Research Group of Networking and Mobile Computing at the Hong Kong Polytechnic University. Professor Guo is a Fellow of the Canadian Academy of Engineering, Fellow of the IEEE, Fellow of the AAIA and Clarivate Highly Cited Researcher.

Qihua Zhou is a PhD student with the Department of Computing at the Hong Kong Polytechnic University. His research interests include distributed AI systems, large-scale parallel processing, TinyML systems and domain-specific accelerators.



1. Introduction 2. Fundamentals: On-device Learning Paradigm 3. Preliminary: Theories and Algorithms 4. Model-level Design: Computation Acceleration and Communication Saving 5. Hardware-level Design: Neural Engines and Tensor Accelerators 6. Infrastructure-level Design: Serverless and Decentralized Machine Learning 7. System-level Design: from Standalone to Clusters 8. Application: Image-based Visual Perception 9. Application: Video-based Real-time Processing 10. Application: Privacy, Security, Robustness and Trustworthiness in Edge AI


andere Formate