Bücher Wenner
Vorlesetag - Das Schaf Rosa liebt Rosa
15.11.2024 um 15:00 Uhr
Machine Learning, Blockchain, and Cyber Security in Smart Environments
Application and Challenges
von Sarvesh Tanwar, Sumit Badotra, Ajay Rana
Verlag: Taylor & Francis
E-Book / EPUB
Kopierschutz: kein Kopierschutz


Speicherplatz: 27 MB
Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-1-000-62391-8
Auflage: 1. Auflage
Erschienen am 31.08.2022
Sprache: Englisch
Umfang: 234 Seiten

Preis: 66,49 €

Klappentext
Biografische Anmerkung
Inhaltsverzeichnis

This book provides a deep insight into the recent techniques which form the backbone of smart environment and addresses the vulnerabilities that cause hindrance for the real-world implementation. It focuses on the benefits related to the emerging applications such as machine learning, blockchain and cyber security.



Sarvesh Tanwar, Sumit Badotra, Ajay Rana



1. Intelligent Green Internet of Things: An Investigation. 2. The Role of Artificial Intelligence in the Education Sector: Possibilities and Challenges. 3. Multidisciplinary Applications of Machine Learning. 4. Prediction of Diabetes in the Early Stages using Machine-Learning Tools and Microsoft Azure AI Services. 5. Advanced Agricultural Systems: Identification, Crop Yields and Recommendation using Image Processing Techniques and Machine-Learning Algorithms. 6. SP-IMLA: Stroke Prediction using an Integrated Machine Learning Approach. 7. Multimodal Medical Image Fusion using Laplacian Re-Decomposition. 8. Blockchain Technology-Enabled Healthcare IoT to Increase Security and Privacy Using Fog Computing. 9. Blockchain in Healthcare, Supply-Chain Management, and Government Policies. 10. Electricity and Hardware Resource Consumption in Cryptocurrency Mining. 11. Cryptographic Hash Functions and Attack Complexity Analysis. 12. Mixed Deep Learning and Statistical Approach to Network Anomaly Detection. 13. Intrusion Detection System Using Deep Learning Asymmetric Autoencoder


andere Formate