Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
Numerical Solutions of Boundary Value Problems of Non-linear Differential Equations
von Sujaul Chowdhury, Syed Badiuzzaman Faruque, Ponkog Kumar Das
Verlag: Taylor & Francis
E-Book / PDF
Kopierschutz: kein Kopierschutz


Speicherplatz: 1 MB
Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-1-000-48611-7
Auflage: 1. Auflage
Erschienen am 24.10.2021
Sprache: Englisch
Umfang: 110 Seiten

Preis: 26,99 €

Klappentext
Biografische Anmerkung
Inhaltsverzeichnis

This book presents in comprehensive detail numerical solution to boundary value problems of a number of non-linear differential equations. This book is primarily aimed at final year undergraduate students of Physics and Mathematics who have undertaken a course on computational physics.



Sujaul Chowdhury is a Professor in Department of Physics, Shahjalal University of Science and Technology (SUST), Bangladesh. He obtained a B.Sc. (Honours) in Physics in 1994 and M.Sc. in Physics in 1996 from SUST. He obtained a Ph.D. in Physics from The University of Glasgow, UK in 2001. He was a Humboldt Research Fellow for one year at The Max Planck Institute, Stuttgart, Germany.

Syed Badiuzzaman Faruque is a Professor in Department of Physics, SUST. He has a research interest in Quantum Theory, Gravitational Physics, Material Science etc. He has been teaching Physics at university level for about 27 years. He studied Physics in The University of Dhaka, Bangladesh and in The University of Massachusetts Dartmouth, U.S.A. and did PhD in SUST.

Ponkog Kumar Das is an Assistant Professor in Department of Physics, SUST. He obtained a B.Sc. (Honours) and M.Sc. in Physics from SUST. He is a promising future intellectual.



1. Introduction. 1.1. The non-linear differential equations we solved in this book. 1.2 Approximation to derivatives. 1.3 Statement of the problem. 1.4 Euler solution of differential equation. 1.5 Newton's method of solving system of non-linear equations 2. Numerical Solution of Boundary Value Problem of Non-linear Differential Equation: Example I. 2.1 The 1st non-linear differential equation in this book: Euler solution. 2.2 The 1st non-linear differential equation in this book: solution by Newton's iterative method. 3. Numerical solution of boundary value problem of non-linear differential equation: Example II. 3.1 The 2nd non-linear differential equation in this book: Euler solution. 3.2. The 2nd non-linear differential equation in this book: solution by Newton's iterative method. 4. Numerical solution of boundary value problem of non-linear differential equation: Example III. 4.1 The 3rd non-linear differential equation in this book: Euler solution. 4.2 The 3rd non-linear differential equation in this book: solution by Newton's iterative method. 5. Numerical solution of boundary value problem of non-linear differential equation: Example IV. 5.1 The 4th non-linear differential equation in this book: Euler solution . 5.2 The 4th non-linear differential equation in this book: solution by Newton's iterative method. 6. Numerical solution of boundary value problem of non-linear differential equation: Example V. 6.1 The 5th non-linear differential equation in this book: Euler solution . 6.2 The 5th non-linear differential equation in this book: solution by Newton's iterative method 7. Numerical solution of boundary value problem of non-linear differential equation: Example VI 7.1 The 6th non-linear differential equation in this book: Euler solution . 7.2 The 6th non-linear differential equation in this book: solution by Newton's iterative method. 8. Numerical solution of boundary value problem of non-linear differential equation: A laborious exercise. 8.1 The 7th non-linear differential equation in this book: Euler solution. 8.2 The 7th non-linear differential equation in this book: solution by Newton's iterative method. Concluding remarks. References


andere Formate