Bücher Wenner
Denis Scheck stellt seine "BESTSELLERBIBEL" in St. Marien vor
25.11.2024 um 19:30 Uhr
Uniform Random Numbers
Theory and Practice
von Shu Tezuka
Verlag: Springer US
Reihe: The Springer International Series in Engineering and Computer Science Nr. 315
Gebundene Ausgabe
ISBN: 978-0-7923-9572-0
Auflage: 1995
Erschienen am 31.05.1995
Sprache: Englisch
Format: 241 mm [H] x 160 mm [B] x 17 mm [T]
Gewicht: 509 Gramm
Umfang: 226 Seiten

Preis: 213,99 €
keine Versandkosten (Inland)


Jetzt bestellen und schon ab dem 05. November in der Buchhandlung abholen

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Inhaltsverzeichnis

In earlier forewords to the books in this series on Discrete Event Dynamic Systems (DEDS), we have dwelt on the pervasive nature of DEDS in our human-made world. From manufacturing plants to computer/communication networks, from traffic systems to command-and-control, modern civilization cannot function without the smooth operation of such systems. Yet mathemat­ ical tools for the analysis and synthesis of DEDS are nascent when compared to the well developed machinery of the continuous variable dynamic systems char­ acterized by differential equations. The performance evaluation tool of choice for DEDS is discrete event simulation both on account of its generality and its explicit incorporation of randomness. As it is well known to students of simulation, the heart of the random event simulation is the uniform random number generator. Not so well known to the practitioners are the philosophical and mathematical bases of generating "random" number sequence from deterministic algorithms. This editor can still recall his own painful introduction to the issues during the early 80's when he attempted to do the first perturbation analysis (PA) experiments on a per­ sonal computer which, unbeknownst to him, had a random number generator with a period of only 32,768 numbers. It is no exaggeration to say that the development of PA was derailed for some time due to this ignorance of the fundamentals of random number generation.



1 Introduction.- 2 Preliminaries from Number Theory.- 3 Linear Congruential Generators.- 4 Beyond Linear Congruential Generators.- 5 Statistical Tests.- 6 Derandomization.- A Sample C Routines.- References.


andere Formate
weitere Titel der Reihe