Bücher Wenner
Denis Scheck stellt seine "BESTSELLERBIBEL" in St. Marien vor
25.11.2024 um 19:30 Uhr
Zeta Functions of Graphs
von Audrey Terras
Verlag: Cambridge University Press
Gebundene Ausgabe
ISBN: 978-0-521-11367-0
Erschienen am 27.04.2017
Sprache: Englisch
Format: 235 mm [H] x 157 mm [B] x 18 mm [T]
Gewicht: 523 Gramm
Umfang: 252 Seiten

Preis: 90,80 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 5. Dezember.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung
Inhaltsverzeichnis

Combinatorics meets number theory in this stimulating stroll through the zetas. Includes well-chosen illustrations and exercises, both theoretical and computer-based.



Audrey Terras is Professor of Mathematics at the University of California, San Diego.



List of illustrations; Preface; Part I. A Quick Look at Various Zeta Functions: 1. Riemann's zeta function and other zetas from number theory; 2. Ihara's zeta function; 3. Selberg's zeta function; 4. Ruelle's zeta function; 5. Chaos; Part II. Ihara's Zeta Function and the Graph Theory Prime Number Theorem: 6. Ihara zeta function of a weighted graph; 7. Regular graphs, location of poles of zeta, functional equations; 8. Irregular graphs: what is the RH?; 9. Discussion of regular Ramanujan graphs; 10. The graph theory prime number theorem; Part III. Edge and Path Zeta Functions: 11. The edge zeta function; 12. Path zeta functions; Part IV. Finite Unramified Galois Coverings of Connected Graphs: 13. Finite unramified coverings and Galois groups; 14. Fundamental theorem of Galois theory; 15. Behavior of primes in coverings; 16. Frobenius automorphisms; 17. How to construct intermediate coverings using the Frobenius automorphism; 18. Artin L-functions; 19. Edge Artin L-functions; 20. Path Artin L-functions; 21. Non-isomorphic regular graphs without loops or multiedges having the same Ihara zeta function; 22. The Chebotarev Density Theorem; 23. Siegel poles; Part V. Last Look at the Garden: 24. An application to error-correcting codes; 25. Explicit formulas; 26. Again chaos; 27. Final research problems; References; Index.


andere Formate