Bücher Wenner
Denis Scheck stellt seine "BESTSELLERBIBEL" in St. Marien vor
25.11.2024 um 19:30 Uhr
Nano Mechanics and Materials
Theory, Multiscale Methods and Applications
von Wing Kam Liu, Eduard G Karpov, Harold S Park
Verlag: Wiley
Gebundene Ausgabe
ISBN: 978-0-470-01851-4
Erschienen am 01.03.2006
Sprache: Englisch
Format: 251 mm [H] x 174 mm [B] x 24 mm [T]
Gewicht: 787 Gramm
Umfang: 334 Seiten

Preis: 144,50 €
keine Versandkosten (Inland)


Jetzt bestellen und voraussichtlich ab dem 28. Oktober in der Buchhandlung abholen.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

144,50 €
merken
zum E-Book (PDF) 114,99 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Biografische Anmerkung
Klappentext
Inhaltsverzeichnis

Wing Kam Liu, Professor, Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3111, USA
Wing Kam Liu has been Professor at the Department of Mechanical Engineering at Northwestern University since 1988. He is also Director of the NSF Summer Institute on Nano Mechanics and Materials. His research interests here include concurrent and hierarchical bridging scale methods for computational mechanics, in particular nano-mechanics and materials, and multi-scale analysis. He is an experienced author, having authored/co-authored over 100 published articles and the book Meshfree Particle Methods (Springer-Verlag, 2004) with Shaofan Li. He is the US Editor of the International Journal of Applied Mathematics and Mechanics (Springer) and has also worked as a consultant to a number of international companies and organizations.
Eduard G. Karpov, Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3111, USA
Harold S. Park, Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3111, USA



The ability to synthesize and analyse the properties of nanoscale objects has revolutionized a wide range of advanced biomedical, mechanical, electrical, smart material and military engineering applications. Nano mechanics, the study and characterization of the mechanical behaviour of individual atoms, systems and structures in response to various loading conditions, has fuelled this progressive technology. In particular, multiple scale modelling methods have allowed engineers to gain a better understanding of nano materials.
Written by respected researchers in the field, this book examines the fundamental concepts in nano mechanics and materials, focusing on their modelling via multiple scale methods and techniques. Nano Mechanics and Materials: Theory, Multiscale Methods and Applications also provides:
* information on the foundations of molecular forces, particle systems and lattice mechanics;
* the theory, formulae and implementation of current multiple scale modelling techniques;
* analysis of mechanical, biological, self-healing and nano/bio composite materials and systems;
* a supplementary website containing accompanying PowerPoint lecture notes.
A comprehensive tutorial on the subject for practising electronics engineers, materials scientists and researchers developing nanoscale materials and applications, this text is also an up-to-date reference for graduates taking courses on nano mechanics or nanotechnology.



Preface.
1. Introduction.
1.1 Potential of Nanoscale Engineering.
1.2 Motivation for Multiple Scale Modeling.
1.3 Educational Approach.
2. Classical Molecular Dynamics.
2.1 Mechanics of a System of Particles.
2.2 Molecular Forces.
2.3 Molecular Dynamics Applications.
3. Lattice Mechanics.
3.1 Elements of Lattice Symmetries.
3.2 Equation of Motion of a Regular Lattice.
3.3 Transforms.
3.4 Standing Waves in Lattices.
3.5 Green's Function Methods.
3.6 Quasistatic Approximation.
4. Methods of Thermodynamics and Statistical Mechanics.
4.1 Basic Results of the Thermodynamic Method.
4.2 Statistics of Multiparticle Systems in Thermodynamic Equilibrium.
4.3 Numerical Heat Bath Techniques.
5. Introduction to Multiple Scale Modeling.
5.1 MAAD.
5.2 Coarse Grained Molecular Dynamics.
5.3 Quasicontinuum Method.
5.4 CADD.
5.5 Bridging Domain.
6. Introduction to Bridging Scale.
6.1 Bridging Scale Fundamentals.
6.2 Removing Fine Scale Degrees of Freedom in Coarse Scale Region.
3D Generalization.
6.3 Discussion on the Damping Kernel Technique.
6.4 Cauchy-Born Rule.
6.5 Virtual Atom Cluster Method.
6.6 Staggered Time Integration Algorithm.
6.7 Summary of Bridging Scale Equations.
6.8 Discussion on the Bridging Scale Method.
7. Bridging Scale Numerical Examples.
7.1 Comments On Time History Kernel.
7.4 Two-Dimensional Wave Propagation.
7.5 Dynamic Crack Propagation in Two Dimensions.
7.6 Dynamic Crack Propagation in Three Dimensions.
7.7 Virtual Atom Cluster Numerical Examples.
8. Non-Nearest Neighbor MD Boundary Condition.
8.1 Introduction.
8.2 Theoretical Formulation in 3D.
8.3 Numerical Examples - 1D Wave Propagation.
8.4 Time History Kernels for FCC Gold.
8.5 Conclusion on the Bridging Scale Method.
9. Multiscale Methods for Material Design.
9.1 Multiresolution Continuum Analysis.
9.2 Multiscale Constitutive Modeling of Steels.
9.3 Bio-Inspired Materials.
9.4 Summary and Future Research Directions.
10. Bio-Nano Interface.
10.3 Vascular Flow and Blood Rheology.
10.4 Electrohydrodynamic Coupling.
10.5 CNT/DNA Assembly Simulation.
10.6 Cell Migration and Cell-Substrate Adhesion.
10.7 Conclusions.
Appendix A: Kernel Matrices for EAM Potential.
Bibliography.
Index.


andere Formate