Bücher Wenner
Pierre Jarawan liest aus DIE FRAU IM MOND
03.09.2025 um 19:30 Uhr
Galois Theory
von Steven H. Weintraub
Verlag: Springer New York
Reihe: Universitext
Hardcover
ISBN: 978-0-387-87574-3
Auflage: 2nd ed. 2009
Erschienen am 21.11.2008
Sprache: Englisch
Format: 235 mm [H] x 155 mm [B] x 13 mm [T]
Gewicht: 353 Gramm
Umfang: 228 Seiten

Preis: 74,89 €
keine Versandkosten (Inland)


Dieser Titel wird erst bei Bestellung gedruckt. Eintreffen bei uns daher ca. am 19. April.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

74,89 €
merken
zum E-Book (PDF) 74,89 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Inhaltsverzeichnis
Biografische Anmerkung
Klappentext

to Galois Theory.- Field Theory and Galois Theory.- Development and Applications of Galois Theory.- Extensions of the Field of Rational Numbers.- Further Topics in Field Theory.- Transcendental Extensions.



Steven H. Weintraub is a Professor of Mathematics at Lehigh University and author of seven books. This book grew out of a graduate course he taught at Lehigh. He is also the author of Algebra: An Approach via Module Theory (with W. A. Adkins).



This is a textbook on Galois theory. Galois theory has a well-deserved re- tation as one of the most beautiful subjects in mathematics. I was seduced by its beauty into writing this book. I hope you will be seduced by its beauty in reading it. This book begins at the beginning. Indeed (and perhaps a little unusually for a mathematics text), it begins with an informal introductory chapter, Ch- ter 1. In this chapter we give a number of examples in Galois theory, even before our terms have been properly de?ned. (Needless to say, even though we proceed informally here, everything we say is absolutely correct.) These examples are sort of an airport beacon, shining a clear light at our destination as we navigate a course through the mathematical skies to get there. Then we start with our proper development of the subject, in Chapter 2. We assume no prior knowledge of ?eld theory on the part of the reader. We develop ?eld theory, with our goal being the Fundamental Theorem of Galois Theory (the FTGT). On the way, we consider extension ?elds, and deal with the notions of normal, separable, and Galois extensions. Then, in the penul- mate section of this chapter, we reach our main goal, the FTGT.


andere Formate
weitere Titel der Reihe