Bücher Wenner
Volker Kutscher liest aus "RATH"
18.11.2024 um 19:30 Uhr
Convexity and Well-Posed Problems
von Roberto Lucchetti
Verlag: Springer New York
Reihe: CMS Books in Mathematics
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-0-387-31082-4
Auflage: 2006
Erschienen am 02.02.2006
Sprache: Englisch
Umfang: 305 Seiten

Preis: 53,49 €

Inhaltsverzeichnis
Klappentext

Convex sets and convex functions: the fundamentals.- Continuity and ?(X).- The derivatives and the subdifferential.- Minima and quasi minima.- The Fenchel conjugate.- Duality.- Linear programming and game theory.- Hypertopologies, hyperconvergences.- Continuity of some operations between functions.- Well-posed problems.- Generic well-posedness.- More exercises.



This book deals mainly with the study of convex functions and their behavior from the point of view of stability with respect to perturbations. We shall consider convex functions from the most modern point of view: a function is de?ned to be convex whenever its epigraph, the set of the points lying above the graph, is a convex set. Thus many of its properties can be seen also as properties of a certain convex set related to it. Moreover, we shall consider extended real valued functions, i. e. , functions taking possibly the values?? and +?. The reason for considering the value +? is the powerful device of including the constraint set of a constrained minimum problem into the objective function itself (by rede?ning it as +? outside the constraint set). Except for trivial cases, the minimum value must be taken at a point where the function is not +?, hence at a point in the constraint set. And the value ?? is allowed because useful operations, such as the inf-convolution, can give rise to functions valued?? even when the primitive objects are real valued. Observe that de?ning the objective function to be +? outside the closed constraint set preserves lower semicontinuity, which is the pivotal and mi- mal continuity assumption one needs when dealing with minimum problems. Variational calculus is usually based on derivatives.


andere Formate
weitere Titel der Reihe