Bücher Wenner
Steffen Kopetzky liest aus Atom (Premierenlesung)
11.03.2025 um 19:30 Uhr
Machine Learning
A Probabilistic Perspective
von Kevin P. Murphy
Verlag: MIT Press
Reihe: Adaptive Computation and Machine Learning series
E-Book / EPUB
Kopierschutz: Adobe DRM


Speicherplatz: 28 MB
Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-0-262-30432-0
Erschienen am 07.09.2012
Sprache: Englisch
Umfang: 1104 Seiten

Preis: 131,99 €

131,99 €
merken
Gratis-Leseprobe
zum Hardcover 128,50 €
Biografische Anmerkung
Klappentext

Kevin P. Murphy is a Senior Staff Research Scientist at Google Research.



A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.


andere Formate
weitere Titel der Reihe