Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
Introduction to Machine Learning
von Ethem Alpaydin
Verlag: MIT Press Ltd
Reihe: Adaptive Computation and Machine Learning series
Gebundene Ausgabe
ISBN: 978-0-262-04379-3
Erschienen am 24.03.2020
Sprache: Englisch
Format: 236 mm [H] x 210 mm [B] x 40 mm [T]
Gewicht: 1485 Gramm
Umfang: 712 Seiten

Preis: 101,50 €
keine Versandkosten (Inland)


Jetzt bestellen und voraussichtlich ab dem 12. Dezember in der Buchhandlung abholen.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

101,50 €
merken
Gratis-Leseprobe
zum E-Book (EPUB) 91,99 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung

A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks.

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks.

The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals.



Ethem Alpaydin is Professor in the Department of Computer Engineering at Özyegin University and Member of The Science Academy, Istanbul. He is the author of Machine Learning: The New AI, a volume in the MIT Press Essential Knowledge series.s).


andere Formate
weitere Titel der Reihe