Bücher Wenner
Wer wird Cosplay Millionär?
29.11.2024 um 19:30 Uhr
Foundations of Machine Learning
von Afshin Rostamizadeh, Ameet Talwalkar, Mehryar Mohri
Verlag: MIT Press Ltd
Reihe: Adaptive Computation and Machine Learning series
Gebundene Ausgabe
ISBN: 978-0-262-03940-6
Erschienen am 25.12.2018
Sprache: Englisch
Format: 236 mm [H] x 184 mm [B] x 32 mm [T]
Gewicht: 1260 Gramm
Umfang: 504 Seiten

Preis: 102,50 €
keine Versandkosten (Inland)


Jetzt bestellen und voraussichtlich ab dem 12. Dezember in der Buchhandlung abholen.

Der Versand innerhalb der Stadt erfolgt in Regel am gleichen Tag.
Der Versand nach außerhalb dauert mit Post/DHL meistens 1-2 Tage.

102,50 €
merken
Gratis-Leseprobe
zum E-Book (EPUB) 91,99 €
klimaneutral
Der Verlag produziert nach eigener Angabe noch nicht klimaneutral bzw. kompensiert die CO2-Emissionen aus der Produktion nicht. Daher übernehmen wir diese Kompensation durch finanzielle Förderung entsprechender Projekte. Mehr Details finden Sie in unserer Klimabilanz.
Klappentext
Biografische Anmerkung

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms.

This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics.

Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review.

This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.



Mehryar Mohri is Professor of Computer Science at New York University's Courant Institute of Mathematical Sciences and a Research Consultant at Google Research.
Afshin Rostamizadeh is a Research Scientist at Google Research.
Ameet Talwalkar is Assistant Professor in the Machine Learning Department at Carnegie Mellon University.


andere Formate
weitere Titel der Reihe