Functionalized nanomaterials have extremely useful properties, which can outperform their conventional counterparts because of their superior chemical, physical, and mechanical properties and exceptional formability. They are being used for the development and innovation in a range of industrial sectors. However, the use of functionalized nanomaterials is still in its infancy in many industrial settings. Functionalized nanomaterials have the potential to create cheaper and more effective consumer products and industrial processes. However, they also could have adverse effects on the environment, human health, and safety, and their sustainability is questionable, if used incorrectly. This book discusses the opportunities and challenges of using functionalized nanomaterials in a variety of major industrial sectors.
Handbook of Functionalized Nanomaterials for Industrial Applications provides a concise summary of the major applications of functionalized nanomaterials in industry today. It covers the enhancements in industrial techniques and processes, due to functionalized nanomaterials, showing how they substantially improve the performance of existing procedures, and how they can deliver exciting consumer products more cheaply. Emphasis is given to greener approaches, leading to more sustainable products and devices. The legal, economical, and toxicity aspects of functionalized nanomaterials are also discussed in detail.
List of contributors
Preface
Section 1
Different kinds of functionalized nanomaterial for
industrial use nanomaterials
1. Functionalization of nanomaterials for industrial
applications: recent and future perspectives
Sukanchan Palit and Chaudhery Mustansar Hussain
1.1 Introduction
1.2 The vision of the study
1.3 Nanotrends in industrial development
1.4 Potential of nanomaterials
1.5 What are functionalized nanomaterials?
1.6 The use of functionalized nanomaterials in industry
1.7 Current research on nanomaterials
1.8 Recent scientific research in the field of functionalized
nanomaterials
1.9 The scientific vision of energy and environmental
sustainability
1.10 Recent research in environmental protection and industrial
ecology
1.11 Integrated water resource management and human factor
engineering
1.12 Groundwater remediation and nanotechnology
1.13 Future research trends in nanotechnology and nanomaterials
1.14 Conclusion and future perspectives
References
Further reading
2. Mixed-matrix membranes incorporated with
functionalized nanomaterials for water applications
Woon-Chan Chong, Chai-Hoon Koo and Woei-Jye Lau
2.1 Introduction
2.2 Mixed-matrix membranes incorporated with carbon-based
nanomaterials
2.3 Mixed-matrix membranes incorporated with titania-based
nanomaterials
2.4 Mixed-matrix membranes incorporated with other
nanomaterials
2.5 Adsorptive mixed-matrix membranes for heavy-metal removal
2.6 Conclusion and future remarks
References
Section 2
Functionalized nanomaterial for catalysis industry
3. Photocatalytic oxygen evolution reaction for energy
conversion and storage of functional nanomaterials
K. Kaviyarasu, C. Maria Magdalane, A. Raja, N. Matinise,
N. Mayedwa, N. Mongwaketsi, Douglas Letsholathebe, G.T. Mola,
Naif AbdullahAl-Dhabi, Mariadhas Valan Arasu, G. Ramalingam,
S.B. Mohamed, Abdulgalim B. Isaev, K. Kanimozhi, A.K.H. Bashir,
J. Kennedy and M. Maaza
3.1 Introduction
3.2 Conclusion
References
4. Functionalized metal-based nanoelectrocatalysts
for water splitting
R.M.P.I. Rajakaruna and I.R. Ariyarathna
4.1 Introduction
4.2 Functionalized nanoelectrocatalysts for HER
4.3 OER catalysts
4.4 Bifunctional electrocatalysts
4.5 Summary
References
5. Functionalized nanographene for catalysis
Santosh Bahadur Singh and Chaudhery Mustansar Hussain
5.1 Nanographene: an introduction
5.2 Functionalization of nanographene
5.3 Catalytic properties and applications of functionalized
nanographene
5.4 Industrial, environmental, and health issues of nanographene
5.5 Conclusions and future aspects
References
Section 3
Functionalized nanomaterials for biomedical,
pharmaceutical, agriculture, and agri-food industry
Section Functionalized nanomaterial and biology
6. Biocompatible nanodelivery systems for the
delivery of bioactive compounds
H. Turasan and J.L. Kokini
6.1 Introduction
6.2 Fabrication methods of biopolymer-based nanodelivery
systems
6.3 Conclusions
References
7. Biopolymer-based nanomaterials for food, nutrition,
and healthcare sectors: an overview on their
properties, functions, and applications
Mohammad Reza Kasaai
7.1 Introduction
7.2 Sources, structure, and characteristics
7.3 Preparation of biopolymer-based nanomaterials
7.4 Applications of biopolymer-based nanomaterials
7.5 Conclusions
7.6 Future perspectives
Funding
Conflict of interests
References
Further reading
8. Surface functionalization of PLGA nanoparticles for
drug delivery
Joana A.D. Sequeira, Irina Pereira, Antö nio J. Ribeiro,
Francisco Veiga and Ana Cl¿audia Santos
8.1 Introduction: background and driving forces
8.2 Active targeting by surface functionalization of PLGA
nanoparticles
8.3 Noncovalent functionalization of PLGA nanoparticles
8.4 Nucleic acid-functionalized PLGA
8.5 Concluding remarks
Acknowledgements
References
9. Biomedical-related applications of functionalized
nanomaterials
Mafalda R. Almeida, M¿ arcia C. Neves, Sergio Morales-Torres,
Mara G. Freire, Joaquim L. Faria, Vale¿ ria C. Santos-Ebinuma,
Cl¿audia G. Silva and Ana P.M.