Bücher Wenner
Mirna Funk liest und spricht über "Von Juden lernen"
10.10.2024 um 19:30 Uhr
Chemicals in the Aquatic Environment
Advanced Hazard Assessment
von Lars Landner
Verlag: Springer Berlin Heidelberg
Reihe: Springer Series on Environmental Management
E-Book / PDF
Kopierschutz: PDF mit Wasserzeichen

Hinweis: Nach dem Checkout (Kasse) wird direkt ein Link zum Download bereitgestellt. Der Link kann dann auf PC, Smartphone oder E-Book-Reader ausgeführt werden.
E-Books können per PayPal bezahlt werden. Wenn Sie E-Books per Rechnung bezahlen möchten, kontaktieren Sie uns bitte.

ISBN: 978-3-642-61334-0
Auflage: 1989
Erschienen am 06.12.2012
Sprache: Englisch
Umfang: 415 Seiten

Preis: 96,29 €

96,29 €
merken
Inhaltsverzeichnis
Klappentext

I Background.- 1. Introduction.- 1.1 Background.- 1.2 Objectives.- 1.3 Working Program.- 1.4 Contents of the Book.- References.- 2. Ecosystem Variability and Gradients. Examples from the Baltic Sea as a Background for Hazard Assessment.- 2.1 Introduction.- 2.2 The Baltic Sea - a Sea of Gradients.- 2.2.1 Background.- 2.2.2 Physical and Chemical Gradients.- 2.2.3 Biological Gradients.- 2.2.4 Forces Counteracting the General Patterns of Gradients.- 2.2.4.1 Seasonal Variations.- 2.2.4.2 Water Exchange and Circulation.- 2.2.4.3 Migrations.- 2.3 Acute, Chronic and Intermittent Exposure.- 2.4 Test Organisms and Test Strategies.- 2.5 Extrapolations.- 2.6 Field Validation.- 2.6.1 General Considerations.- 2.6.2 Eco-epidemiology.- 2.6.3 Behavioral Aspects of Field Validation.- 2.6.4 Recovery Studies as a Tool in Field Validation.- 2.7 Environmental Gradients, Toxic Chemicals and Stress.- References.- 3 The ESTHER Approach to Environmental Hazard Assessment of Chemicals.- 3.1 Testing and Hazard Assessment: One Phase in the Decision Making on Chemicals.- 3.2 Initial Hazard Assessment of Chemicals - the ESTHER Manual.- 3.2.1 Background.- 3.2.2 Design of the ESTHER Manual for Initial Hazard Assessment of Chemicals.- 3.3 Defining Targets of Exposure.- 3.3.1 General Aspects.- 3.3.2 Rationale for Selecting Targets of Exposure.- 3.3.3 Possible Methodologies to Define Targets of Exposure.- 3.4 Objectives of an Advanced Hazard Assessment.- 3.5 Major Differences Between Initial and Advanced Hazard Assessment.- 3.6 "The ESTHER Approach".- References.- II Special Topics.- 4 Factors Determining the Fate of Organic Chemicals in the Environment: the Role of Bacterial Transformations and Binding to Sediments.- 4.1 Introduction.- 4.2 Experimental Procedures.- 4.2.1 Chemical Considerations.- 4.2.1.1 Quantification and Identification of Substrates and Metabolites.- 4.2.1.2 Binding of Substrates and Metabolites: Extraction Procedures.- 4.2.2 Microbiological Considerations.- 4.2.2.1 General Aspects.- 4.2.2.2 Experimental Aspects.- 4.3 Aerobic Reactions.- 4.3.1 Significant Areas.- 4.3.1.1 The Effect of Co-substrates: Concurrent Metabolism.- 4.3.1.2 The Effect of Substrate Concentration and Cell Density.- 4.3.1.3 Rates of Transformation.- 4.3.2 Problem Areas and Unresolved Issues.- 4.3.2.1 The Problem of Translating Laboratory Data to Field Situations.- 4.3.2.2 Aspects of Metabolism and Regulation.- 4.4 Anaerobic Reactions.- 4.4.1 Significant Areas.- 4.4.1.1 Metabolic Reactions.- 4.4.1.2 The Role and Significance of Syntrophy.- 4.4.2 Problem Areas and Unresolved Issues.- 4.4.2.1 The Stability of Consortia and Their Metabolic Dependence.- 4.4.2.2 The "Natural" Substrates for Growth.- 4.5 The Role of Sediments in Determining Environmental Fate.- 4.5.1 Background.- 4.5.2 Sorption and Binding: the Degree of Reversibility.- 4.5.3 Some Important Unresolved Issues.- 4.6 A Personal Summing-up.- References.- 5 Bioavailability and Uptake of Xenobiotics in Fish.- 5.1 Introduction.- 5.2 Background.- 5.3 Physiological Factors Affecting the Uptake Rate.- 5.4 Pow Value Versus Rate of Uptake.- 5.5 Importance of pH.- 5.6 General Discussion and Conclusions.- References.- 6 Bioaccumulation and Biomagnification of Hydrophobic Persistent Compounds as Exemplified by Hexachlorobenzene.- 6.1 Uptake and Elimination Via the Water.- 6.2 Abiotic Environmental Factors Affecting Bioavailability.- 6.3 Uptake and Passive Elimination Via the Food.- 6.4 Active Excretion.- 6.5 Net Bioaccumulation and the Occurrence of Biomagnification.- 6.6 Conclusions.- References.- 7. Fish Bile Analysis for Monitoring of Low Concentrations of Polar Xenobiotics in Water.- 7.1 Introduction.- 7.2 Design of the Study.- 7.3 Chemical Synthesis and Analysis.- 7.3.1 Isotope-labeled 4,5,6-Trichloroguaiacol.- 7.3.2 Chemical Analysis by Radiometric Techniques.- 7.3.2.1 Content of 4,5,6-TCG in Water.- 7.3.2.2 Content of Metabolites in Bile.- 7.4 Factors Affecting Regulation of Foreign Compounds in FishBile.- 7.4.1 Biotransformation.- 7.4.1.1 In Vitro and in Vivo Metabolism of 4,5,6-TCG.- 7.4.1.2 Enzyme Induction and Seasonal Variations.- 7.4.2 Fish Species.- 7.4.3 Fish Size.- 7.4.4 Nutrition.- 7.5 Exposure of Fish to 4,5,6-TCG.- 7.5.1 Short-term Exposure.- 7.5.2 Long-term Exposure.- 7.6 Field Application.- 7.7 Conclusions.- References.- 8 Ecological Concepts Important for the Interpretation of Effects of Chemicals on Aquatic Systems.- 8.1 Introduction.- 8.2 Assessment of Toxic Effects at the Population Level.- 8.2.1 Mortality Distribution in Aquatic Populations.- 8.2.2 Compensatory Mortality in the Interpretation of Effects.- 8.2.3 The Survivor Effect at the Population Level.- 8.3 Assessment of Toxic Effects at the Community Level.- 8.3.1 Community Analysis.- 8.3.2 The Guild: A Community Tool for Complex Ecological Interactions.- 8.3.3 The Specialist-Generalist Concept Applied to Hazard Assessment.- 8.3.4 Role of Keystone Species in Effect Assessment.- 8.3.5 The Survivor Effect at the Community Level.- 8.4 Assessment of Effects at the Ecosystem Level.- 8.4.1 Stress and Ecosystems.- 8.4.2 Cumulative Environmental Effects.- 8.5 Decision Rules for Interpreting the Effects of Chemicals.- References.- 9 Selected Assays for Health Status in Natural Fish Populations.- 9.1 Concepts in Health Monitoring.- 9.1.1 Effects Expressed at Different Biological Levels.- 9.1.2 Criteria for Health Assays in Fish.- 9.2 Development of Health Assays.- 9.2.1 Level of Organization.- 9.2.2 Physiological Methods in Fish Health Assessment.- 9.2.3 Laboratory Studies.- 9.2.4 Use of Physiological Methods in Field Studies.- 9.3 Assays for Health Status in Natural Fish Populations.- 9.3.1 ?-Aminolevulinic Acid Dehydratase.- 9.3.2 Mixed Function Oxidase.- 9.3.3 Metallothionein.- 9.3.4 Smoltification in Salmonids.- 9.4 Future Development: Remarks and Recommendations.- References.- 10 Community Testing, Microcosm and Mesocosm Experiments: Ecotoxicological Tools with High Ecological Realism.- 10.1 Introduction.- 10.2 Strategies Used in Designing Multi-species Test Systems.- 10.3 Shortcomings of Some Early Model Ecosystem Designs.- 10.4 Community Testing with Natural Associations of Periphyton and Phytoplankton.- 10.4.1 Introduction.- 10.4.2 Rationale.- 10.4.3 Design and Procedures.- 10.4.4 Advantages and Disadvantages.- 10.4.5 Validation.- 10.4.6 Applications.- 10.5 Pollution-Induced Community Tolerance (PICT).- 10.5.1 Rationale.- 10.5.2 Evidence.- 10.5.3 Applications.- 10.6 Enclosure of Marine Profundal-zone Benthic Communities.- 10.6.1 System to be Studied.- 10.6.2 Trophic Structure and Feeding Strategies.- 10.6.3 Rationale of Microcosm Enclosures.- 10.6.4 Design and Procedures.- 10.6.5 Similarity with Mother System.- 10.6.6 Applications.- 10.7 Land-based, Marine Littoral-zone Enclosures.- 10.7.1 Problem of Setting up Land-based Aquatic Mesocosms.- 10.7.2 Rationale.- 10.7.3 Design and Procedures.- 10.7.4 Stability, Reproducibility and Similarity with Mother System.- 10.7.5 Application and Field Validation.- 10.8 Limnic in Situ Enclosures - Limnocorrals.- 10.8.1 Rationale.- 10.8.2 Choice of Mother System and Design of Limnocorrals.- 10.8.3 Similarity with Mother System.- 10.8.4 Advantages and Disadvantages of the Limnocorral Approach.- 10.9 Discussion and Conclusions.- References.- III Case Studies.- 11 Advanced Hazard Assessment of Arsenic in the Swedish Environment.- 11.1 Inorganic Arsenic Compounds.- 11.1.1 Physical and Chemical Properties.- 11.1.2 Industrial Production.- 11.1.3 Uses of Arsenic Compounds.- 11.2 Organic Arsenic Compounds.- 11.2.1 Physical and Chemical Properties.- 11.2.2 Man-made Organic Arsenic Compounds.- 11.2.3 Uses and Quantities.- 11.2.4 Naturally Occurring Organic Arsenic Compounds.- 11.3 Recommended Analytical Procedures.- 11.3.1 Sampling and Sample Treatment.- 11.3.1.1 Natural Waters.- 11.3.1.2 Sediments.- 11.3.1.3 Biological Materials.- 11.3.2 Analytical Methods for Environmentally Relevant Arsenic Compounds.- 11.3.2.1 Background.- 11.3.2.2 Total Arsenic.- 11.3.2.3 Speciation of Inorganic Arsenic.- 11.3.2.4 Separation of Inorganic and Organic Arsenic in Aquatic Organisms and Sediment.- 11.3.2.5 Organic Arsenic Compounds.- 11.3.3 Possible Errors and Difficulties.- 11.3.3.1 Storage of Samples.- 11.3.3.2 Extraction.- 11.3.3.3 Hydride Generation Methods.- 11.3.3.4 Column Separation Methods.- 11.4 Natural Occurrence of Arsenic.- 11.4.1 Rocks, Soils and Sediments.- 11.4.2 Air.- 11.4.3 Water.- 11.4.3.1 Natural Sources.- 11.4.3.2 Arsenic Levels in Groundwater.- 11.4.3.3 Arsenic Levels in Precipitation.- 11.4.3.4 Arsenic Levels in Surface Freshwater.- 11.4.3.5 Arsenic Levels in Marine Water.- 11.4.4 Biota.- 11.5 Anthropogenic Sources and Discharges of Arsenic.- 11.5.1 Global Situation.- 11.5.2 Situation in Sweden.- 11.5.2.1 Discharges from Industrial Activities.- 11.5.2.2 Releases from the Use of Arsenic Compounds as Pesticides.- 11.5.2.3 Releases from Waste Dumps and Deposits.- 11.6 Levels of Exposure of Arsenic in Swedish Contaminated Systems.- 11.6.1 Freshwater.- 11.6.2 Brackish Water.- 11.7 Physical and Chemical Factors Regulating Arsenic Exposure.- 11.7.1 General Influence of Water Quality.- 11.7.2 Oxidation - Reduction.- 11.7.3 Adsorption and Precipitation.- 11.8 Biological Factors Regulating Arsenic Exposure.- 11.8.1 Biotransformation by Microorganisms.- 11.8.1.1 Bacteria, Molds and Fungi.- 11.8.1.2 Algae.- 11.8.2 Uptake and Bioconcentration in Algae and Invertebrates.- 11.8.2.1 Background.- 11.8.2.2 Distribution and Bioaccumulation in a Marine Littoral Model Ecosystem.- 11.8.2.3 Distribution and Bioaccumulation in a Marine Profundal Soft-bottom System.- 11.8.3 Summary of the Metabolic Cycle of Arsenic in Aquatic Ecosystems.- 11.9 Effects Studied with Microalgal Populations and Communities.- 11.9.1 Microalgal Populations.- 11.9.2 Microalgal Communities.- 11.9.2.1 Short-term Effects on Periphyton Photosynthesis.- 11.9.2.2 Long-term Effects on Periphyton Biomass and Species Composition in Marine Microcosms.- 11.9.2.3 Sensitivity of Photosynthesis in Periphyton at Elevated Nutrient Levels.- 11.9.2.4 Short-term Effects of Various Arsenicals on Periphyton and Phytoplankton in Different Environments.- 11.9.2.5 Pollution-Induced Community Tolerance (PICT).- 11.9.3 Conclusions from Microalgal Test Systems.- 11.10 Effects Studied with Marine, Profundal-zone, Benthic Microcosms.- 11.11 Effects on a Marine Littoral Ecosystem - Studied with Land-based Mesocosms.- 11.11.1 Background.- 11.11.2 Effects of Arsenic on the Algal Components.- 11.11.2.1 Primary Effect on Fucus vesiculosus.- 11.11.2.2 Effect on Phosphate Uptake.- 11.11.2.3 The Effect of the Disappearance of Fucus on Other Algae.- 11.11.3 Effects on the Animal Components.- 11.11.3.1 Methods.- 11.11.3.2 Effects on Macroinvertebrates.- 11.11.3.3 Effects on Fish.- 11.11.4 Conclusions.- 11.12 Hazard Assessment of Arsenic in Aquatic Ecosystems.- 11.12.1 General Aspects.- 11.12.2 Occurrence.- 11.12.3 Routes.- 11.12.4 Mode of Action.- 11.12.5 Ecotoxicity.- 11.12.6 Evaluation.- References.- 12 Advanced Hazard Assessment of 4,5,6-Trichloroguaiacol in the Swedish Environment.- 12.1 Origin and Properties of Chloroguaiacols and Chlorocatechols.- 12.2 Sources and Discharges of 4,5,6-Trichloroguaiacol and 3,4,5-Trichlorocatechol.- 12.2.1 Quantities Formed in Various Bleaching Processes.- 12.2.2 Discharges of 4,5,6-TCG and 3,4,5-TCC.- 12.3 Biotransformation and General Turnover in the Environment.- 12.3.1 Introduction.- 12.3.2 Microbial Reactions in the Aquatic Phase.- 12.3.3 Occurrence of Chloroguaiacols and Chloroveratroles in Biota.- 12.3.4 Binding to, and Reactions in the Sediment Phase.- 12.3.5 The Role and Significance of Environmental Factors.- 12.4 Procedures for Synthesis of Test Compounds.- 12.4.1 Introduction.- 12.4.2 Synthesis of Unlabeled Chloroguaiacols and Their Metabolites.- 12.4.2.1 Synthesis of 4,5,6-Trichloroguaiacol.- 12.4.2.2 Synthesis of 3,4,5-Trichlorocatechol.- 12.4.2.3 Synthesis of 3,4,5-Trichloroveratrole.- 12.4.3 Comments on Synthetic Procedures for Unlabeled Compounds.- 12.4.4 Synthesis of Labeled Chloroguaiacols and Chlorocatechols.- 12.5 Procedures for Sampling and Analysis.- 12.5.1 Sampling and Sample Treatment.- 12.5.2 Extraction and Analysis of 4,5,6-Trichloroguaiacol and Its Metabolites.- 12.5.2.1 Water.- 12.5.2.2 Extraction and Characterization of Sediment.- 12.5.2.3 Extraction of Algae.- 12.5.2.4 Extraction of Invertebrates and Fish.- 12.5.2.5 Pretreatment and Extraction of Fish Bile.- 12.5.2.6 Gas Chromatographic Analysis.- 12.5.3 Mass Spectrometric Identification.- 12.5.3.1 Introduction.- 12.5.3.2 Identification of Chloroguaiacols and Chlorocatechols.- 12.5.3.3 Identification of Chloroveratroles and l,2,3-Trichloro-4,5,6-trimethoxybenzene.- 12.6 Biological Factors Regulating Exposure.- 12.6.1 Biotransformation by Bacteria.- 12.6.1.1 Introduction.- 12.6.1.2 Rates of Aerobic O-methylation.- 12.6.1.3 Rates of Anaerobic Reactions.- 12.6.1.4 The Problem of Extrapolation to the Natural Environment.- 12.6.2 Bioavailability and Uptake Through Fish Gills.- 12.6.2.1 Rate of Uptake Measured in Perfused Gills.- 12.6.2.2 Uptake Measured in Vivo.- 12.6.3 Bioaccumulation and Biomagnification.- 12.6.3.1 Introduction.- 12.6.3.2 Accumulation in Algae.- 12.6.3.3 Accumulation in Invertebrates.- 12.6.3.4 Accumulation in Fish.- 12.6.3.5 Evidence for Biomagnification.- 12.7 Effects Studied at the Single-species Level.- 12.7.1 Some Background Data.- 12.7.2 Inhibition of Photosynthesis.- 12.7.3 Induction of Hepatic Enzymes in Fish.- 12.8 Effects Studied at the Community Level.- 12.8.1 Effects on Periphyton Communities in Brackish-water Littoral Mesocosms.- 12.8.2 Effects on Marine Periphyton Communities.- 12.9 Effects Studied at the Systemic Level.- 12.9.1 Brackish-water Littoral Ecosystem.- 12.9.2 Effects on the Algal Component.- 12.9.3 Effects on the Invertebrate Component.- 12.9.3.1 Fucus Habitat.- 12.9.3.2 Sediment Habitat.- 12.9.4 Effects on the Fish Component.- 12.9.5 Budget of 4,5,6-TCG with Metabolites and Long-term Effects.- 12.10 A Tentative Hazard Assessment of 4,5,6-Trichloroguaiacol.- References.- 13 A Tentative Hazard Assessment of Hexachlorobenzene in the Aquatic Environment.- 13.1 Physical and Chemical Properties.- 13.1.1 Physical Properties.- 13.1.2 Chemical Properties and Reactivity.- 13.1.3 Photochemical Reactivity.- 13.2 Sources and Uses.- 13.2.1 Synthesis.- 13.2.2 Use.- 13.2.3 Formation as a By-product in the Organicchemical Industry.- 13.2.4 Formation as a By-product in Other Industrial Processes.- 13.2.5 Formation in Combustion Processes.- 13.3 Recommended Analytical Procedures.- 13.3.1 Sampling and Sample Treatment.- 13.3.1.1 Tissue Samples.- 13.3.1.2 Sediment Samples.- 13.3.2 Analytical Methods for HCB in Environmental Samples.- 13.3.3 Possible Errors and Difficulties.- 13.4 Occurrence in the Environment - Levels of Exposure.- 13.4.1 Occurrence in Air.- 13.4.2 Content in Water and Sediment.- 13.4.3 Concentrations in Biota.- 13.4.3.1 Feral Fish.- 13.4.3.2 Regional Distribution - Content in Human Breast Milk.- 13.5 Biological Factors Regulating Exposure.- 13.5.1 Biochemical Degradation.- 13.5.2 Bioavailability - Permeation Through Biological Membranes.- 13.5.3 Uptake and Bioconcentration.- 13.5.4 Biotransformation in Higher Animals.- 13.5.5 Biotransformation in Lower Animals and in Plants.- 13.5.6 Mechanism of Biotransformation in the Rat.- 13.6 Effects Studied at the Individual or Population Level.- 13.7 Mechanisms Behind Observed Toxic Effects.- 13.8 Some Concluding Comments on the Environmental Hazard of HCB.- References.- IV Conclusions.- 14 Concluding Remarks.- References.- Appendix I.- Species and Genera Index.



Hazard assessment of a compound (xenobiotic) discharged to the aquatic environment requires data on both exposure and effects to various components of the ecosystem. The multitude of ecological gradients in the Baltic Sea is used as a background example for discussing the complexity of the issue and the need for new approaches. Therefore, this book attempts to go beyond the simplistic, standardized short-term laboratory tests traditionally used as a basis for hazard assessment of chemicals, and gives strong emphasis to the interpretation of ecotoxicological data in their real, ecological context, pointing out the need to consider the natural mortality distribution of the population under study, the role of keystone species and of species with broad ecological niches versus those with narrow, specialized niches.


weitere Titel der Reihe